Tarihin akışını değiştiren 17 matematik denklemi

3. KalkülüsKalkülüs cebir, trigonometri ve analitik geometri konularının üzerine inşa edilmiştir. Kalkülüs matematiğin bir alt dalı olan matematiksel analizin giriş kısmıdır ve fonksiyon, limit, türev, integral, diziler, seriler vb. konuları içerir.Kalkülüsün geçmişi genelde antik çağ, orta çağ ve modern çağ olmak üzere farklı evrelere ayrılır. Newton ve Leibniz modern anlamda türev denklemini birbirlerinden bağımsızca yazmışlardır ve Kalkülüs tarihinin en önemli isimlerindendirler.Kalkülüs hareket ve değişken içeren her türlü modelde, yani yaşamın istisnasız her alanında kullanılır. Örneğin doğa bilimleri, bilgisayar bilimleri, istatistik, mühendislik, ekonomi, iş yaşamı ve tıp başta olmak üzere matematiksel modellemenin gerektiği ve en uygun çözüm testlerinin istendiği alanlarda kullanılmaktadır.

3. Kalkülüs
Kalkülüs cebir, trigonometri ve analitik geometri konularının üzerine inşa edilmiştir. Kalkülüs matematiğin bir alt dalı olan matematiksel analizin giriş kısmıdır ve fonksiyon, limit, türev, integral, diziler, seriler vb. konuları içerir.

Kalkülüsün geçmişi genelde antik çağ, orta çağ ve modern çağ olmak üzere farklı evrelere ayrılır. Newton ve Leibniz modern anlamda türev denklemini birbirlerinden bağımsızca yazmışlardır ve Kalkülüs tarihinin en önemli isimlerindendirler.

Kalkülüs hareket ve değişken içeren her türlü modelde, yani yaşamın istisnasız her alanında kullanılır. Örneğin doğa bilimleri, bilgisayar bilimleri, istatistik, mühendislik, ekonomi, iş yaşamı ve tıp başta olmak üzere matematiksel modellemenin gerektiği ve en uygun çözüm testlerinin istendiği alanlarda kullanılmaktadır.

4. Kütle çekimi
Isaac Newton gök cisimlerinin hareketleriyle ilgili yaptığı çalışmalar sonucu kütlelerin birbirine uyguladığı çekim kuvvetini keşfetmiştir. Bu yüzden; bu kanuna Newton'ın evrensel kütle çekimi yasası adı verilmiştir.

Kütle çekimi, nesnelerin birbirlerine doğru çekme kuvveti uygulamasına denir. Newton'ın evrensel kütle çekimi yasasının mekanizması; bir nokta kütle (m1) diğer bir nokta kütleyi (m2) iki kütlenin çarpımı ile doğru, aralarındaki (r) uzaklığının karesi ile ters orantılı olacak büyüklükteki bir F2 kuvveti ile çeker. Kütlelerden ve bu kütlelerin aralarındaki uzaklıktan bağımsız olarak |F1| ve |F2| kuvvetlerinin büyüklükleri her zaman birbirine eşittir ve G kütle çekimi sabitidir.

5. Karmaşık Sayılar
Doğal sayılardan negatif sayılara, kesirli sayılardan reel sayılara, matematikçiler hangi sayıların gerçekten olduğu fikrini sürekli ileri taşımaktalar. -1'in kare kökü i ile ifade edilen -1'in kare kökü karmaşık sayıları ortaya çıkararak gerçek sayı kavramını bir üst boyuta taşımaktadır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. Matematikte bu sayıların uzayı olarak C gösterilir. Bu harfin seçilmesinin nedeni İngilizce'de karmaşık sözcüğünün karşılığının complex olmasıdır. Bütün gerçel sayılar sanal kısımları sıfıra eşit olan birer karmaşık sayı olarak düşünülebilir. Diğer bir deyişle gerçel sayılar, karmaşık sayı düzleminde gerçel sayılar ekseni üzerinde bulunurlar. Karmaşık sayı, iki boyutlu kartezyen koordinat sisteminde, nokta veya konum vektörü olarak gösterilebilir. Sayılar alışılageldiği gibi yatay bileşen gerçel kısmı ve düşey (dikey) bileşende sanal kısmı olarak çizilir.

6. Euler Formülü
Her bir çokyüzlü için K (köşe sayısı) + Y (yüz sayısı) − A (ayrıt-kenar sayısı) sayısını hesaplarsak her zaman sonucun 2 olduğunu görürüz. Euler'in bu formülü tüm konveks (dışbükey) çokyüzlüler için geçerlidir.

Euler formülü'nde x yerine değişkenler konularak yeni bağıntılar türetilebilir. Bu bağıntılardan yaralanılarak yeni trigonometrik bağıntılara varılabilir ve yine bir kümenin alt küme sayılarını veren Bell Sayıları'nı veren üreteç fonksiyonuna da kompleks değişkenler verilerek trigonometrik analog bulunabilir.

Veri politikasındaki amaçlarla sınırlı ve mevzuata uygun şekilde çerez konumlandırmaktayız. Detaylar için çerez politikamızı inceleyebilirsiniz.